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SUMMARY

A theory is developed for aircraft control obtained from the propeller
forces and moments generated by blade angle variation during a blade revolution.
The propeller blade is pitched harmonically one cycle per propeller revolution.
As a result, the propeller off-set thrust and power produce forces and moments
on the axis which provide control for the vehicle. This is termed cyclic-control.
Using quasi-steady principles, and a power series representation of an arbitrary
function for cyclic-blade angle, theory is developed which leads to exact solu-
tions in terms of derivatives of steady-state thrust and power with respect to
blade angle. An alternative solution, when the cyclic-blade angle is sSinusoidal,
is in terms of Bessel functions. This solution is mathematically valid for
cyclic-blade angles to 90 degrees. Steady-state propeller theories and experi-
ments are well documented and available in the literature, and in addition, an
approximate method is given in the present report. Needed are the steady-state
first and higher order derivatives of thrust and power with respect to steady-
state blade angle. An estimate of non-steady azimuth angle change or lag is
presented. Correlations of cyclic-control theory predictions are made with
experiment.

For vehicle control it is desirable to isolate forces and moments. In
this aspect it is shown how the counterrotating propeller is unique. By
applying a cyclic-blade angle at the proper azimuth angle on each rotor, a
force can be generated in any direction without an accompanying moment on
the counterrotating propeller axis, or alternatively, a moment without force.
In the hovering mode, cyclic control provides propulsion in any direction to
the dual rotor without rotor tilt or moments. Also, when in the propeller mode
at the tail of an airship or submarine, this provides isolated or combined con-
trol forces and moments with no airship movement. It is shown how three or
more single rotation propellers, in line as on a wing, can aiso isolate control
forces and moments by cyclic-control.

INTRODUCTION

In the technical evolution of broadening the high-low speed range capa-
bility of aircraft, the propulsive unit, as speed decreases, must increasingly
augment both 1ift and control. Ideally, both would be contained in a single
and optimized unit. By making the blades cyclic controllable, the propeller
or rotor becomes a propulsive unit in which propulsion, 1ift, and control are
combined, as in some helicopter designs. The term cyclic control refers to
harmonically changing the blade angle from 8o + y to Bo - v to Bg + y degrees
during each propeller revolution, where y and the azimuth angle, ¥, at which
y is added, are both controllable. A Tist of the types of aircraft or the
types of operations for cyclic control application would include tilt-
wing, tilt-rotor, vectored slipstream by normal or side forces, short take-off
and landing, loiter, lifting-crane, airship or submarine, control of slipstream
deflection for best cruise, and air-cushion. In some of these applications
only a limited number of degrees of freedom is of concern and the term mono-
cyclic propeller has been used. Cyclic-control theory does not become more
complicated for more degrees of freedom and can be derived for generalized
cyclic control valid for six degrees of freedom.



Cyclic-control experimental data is presented in reference 1 on work
done by de Decker. This experimental data is with zero free stream velocity
and includes thrust and power, without and with cyclic blade-angle, and side
force and pitching moment of the propeller with cyclic blade angle for various
blade angle settings. Basic cyclic-control analysis is developed in reference
2. Recent counterrotating-rotor cyclic-control analysis for the helicopter,
based on helicopter theory assumptions of low disc loading and small blade and
inflow angles, was developed by Drs. Wadia and Fairchild and presented (ref. 3)

in a paper. The analysis of reference 2 is partly based on an analogy of cyclic-

control, with inclined propeller methods. The theory of a propeller with cyclic
change of blade angle is analogous to the theory of the inclined propeller or
the propeller in yaw developed in references 4 and 5. The primary difference
is that the cyclic-control blade does not sense a dynamic pressure change,
whereas, for the inclined propeller, changes in dynamic pressure occur during

a cycle. Helicopter theory for cyclic control is simplified to rotors of small
solidity and small blade and inflow angles, and is generally inadequate for
highly loaded propellers of large solidity. The theory of reference 2 contains
the concept that cyclic control on a counterrotating propeller can isolate all
control forces and moments. Details of this concept were presented by DeYoung
for VLM Corporation to an Army evaluation team USAAMRDL (Ames Research Center),
in an unpublished paper, "The Counterrotating Rotor with Cyclic-Control Permits
Isolation of Forces and Moments," February 17, 1972, Fort Worth, Texas.

The principal objective of the present study is to present a generalized
theory relating cyclic-control forces, moments, power and thrust changes to the
steady-state characteristics of the same propelier for arbitrary propeller
solidity or disc loading; to derive counterrotating propeller cyclic-control
analysis in terms of that of the single propeller solution; and to investigate
the effectiveness of propeller or rotor configurations or combinations for
isolating cyclic-control forces and moments. The present study starts with a
refinement, clarification, and extension of the basic theory developed in
reference 2. )

SYMBOLS*
B number of blades
1
b propeller blade chord (baV = 1.2?}r b dp)
12
Cm pitching moment coefficient M
P n2 p°
a

* A11 forces and moments are acting at propeller hub, See figure 1 for
positive directions.




N

normal-force coefficient —————=
2 4
p, n D
a
. . Nyaw
yawing moment coefficient > E
e.n D
a
power coefficient (2nC,), P
Q 345
p. n° D
a
torque coefficient (CP/Zw), ———%%—1;———
e. n D
a
thrust coefficient T2 7
p. n D
a
side-force coefficient Y
2 A4
panD
propeller diameter
3/2
2 O1
figure of merit (static conditions, [~ ¢ )
P

advance ratio (V/nD)

advance ratio at which thrust is zero
advance ratio at which power is zero

Bessel function of the first kind (eq. (44))

fractio?§1 change of power radial position with blade angle
eq. 57

fractional change of thrust radial position with blade angle
(eq. (53))

propeller rotational speed, revolutions per second

power input to propeller



freestream dynamic pressure (paV2/2)

propeller radius
radius distance from propeller axis
propeller thrust

freestream velocity

blade angle at o 3/4,(6o - )

blade angle at p = 3/4, measured, from

blade angle at o = 3/4 for which p tang
radius, measured from zero 1ift (eq. (5

zero 1ift (g + ¢)

(o) is most constant along
4))

maximum cyclic angle, positive at ¥ = n to give positive pitching

moment

blade angle between zero 1ift chord and
section Cga/ZH

dimensionless radial distance (r/R)
density of air

thrust off-set for pitching (2 Cm/CTaV)
radius center-of-power position (rP/R)
op at blade angle By = By (eq. (57))
radius center-of-thrust position (rT/R)

py at blade angle g, = By (eq. (53))
4B b
3r D

effective solidity ( av)

geometric chord




T blade tip correction factor (eq. (66))

b propeller inflow angle

¥ azimuth angle, positive clockwise

A azimuth angle for maximum cyclic-blade angle (eq. (1))
Subscripts

av average

0 indicates the steady-state value

Superscripts

L first, second, etc., derivatives with respect to By OF B
*

denotes linear with advance ratio from JOT



SOLUTION FOR CYCLIC-CONTROL PROPELLER CHARACTERISTICS

Force and Moment Coefficients in Terms
of Azimuth Angle Integrals

For cyclic-control of propeller forces and moments a cyclic variation of
blade angle is superimposed on the steady-state blade angle during one
revolution of the propeller. When this variation is continually repeated, the
thrust and torque will also vary during the cycle and lead to thrust off-set,
side forces, and resulting moment changes. The azimuth angle, ¥, is defined
as shown in figure 1, also the positive directions of force and moment
coefficients are shown. Let

for clockwise rotation; ¥

I}
]

(1)

. . - + +
for counterclockwise rotation; Wo th wax Wcon

where Y is the azimuth angle at which the blade thrust and torque are minimum,
¥ph is = the phase angle that the thrust and torque lag the blade angle, Y¥3x

is the effective phase angle change due to blade pitching velocity (appendix A),
and Ycon is the azimuth angle that can be chosen to govern or control the
position of minimum blade thrust. The average thrust and average power
coefficients are

2m
_ 1
Crav = 70 CT(\P"\Fo)d\P (2)
0
2m
_ 1
Cpay = 5;—-4[ Cp(w-wo)dw , (3)
0

where Cr(¥-¥,) and Cp(¥-¥,) represent functional relations of variations with
(v-¥5), and are abritrary functions.

The hub pitching moment is the product of the thrust and the z component
of radial distance of center of thrust, then
2m
C = - E%—' pT(w-wo)CT(w-wo)cos y dy (4)




The hub yawing moment is the product of the thrust and the y component of
radial distance of center of thrust, then

2m
C, = - Z%_ J. pT(w-wo)CT(w-wo)sin ¥ dy
0

Cm tan v (5)

where the second equality is obtained by noting that the functional variation
of p7 and Cy is antisymmetric with (¥-¥5) and that

sin ¥ = cos ¥, s1n(w-w0) +sin ¥, cos(w-wo)
then the first term in this sin ¥ expansion will be zero in the integration
from v = 0 to 2r. Similarly, the expansion of cos ¥ in equation (4) leads to

cos ¥o cos(¥-¥5) and this multiplied by tan ¥, results in C, = Cy tan ¥,.

The side force is the integration of the change of torque normal to the
xz-plane, divided by the radial center of torque or power, then

N ENCES NGNS
NI ) BRI T ) Rty e ©
0o 0

The normal force is the integration of the change of torque normal to the
xy-plane, divided by the radial center of power, then

. 21rCP(W-WO) . ;
CN = 2—,"2— W sin ¥ dy = -CY tan \PO ( )
0

where as in equation (5) the integrand factor of sin v is antisymmetric.

The thrust off-set for pitching is

A M 2 Cm

o = = = (8)
m R R Tav CTav




The thrust off-set for yawing is

1 _ Nyaw _ 2 Cn - P tan v

Py = = 0
n R R Tav C

Tav

The figure of merit (static conditions) is
/9
C 3/2

2%
Fy = A/Z; o (10)

The signs of equations (4) through (7) are for clockwise propeller
rotations, however, the final signs and magnitudes of these coefficients will
depend on the azimuth angle, ¥,. For counterclockwise rotation, equations (4),
(5), and (7) remain the same, only the sign of equation (6) for Cy changes, but
the final sign and magnitude will depend on Y,. With the azimuth control
angle, Ycop, €qual to zero, and ¥, small, then the counterclockwise rotation
has Cp and Cy with the same sign, and Cy and C, with opposite sign to that at
clockwise rotation, with magnitude the same.

Cyclic-Control Solutions by Power Series

A1l the functional factors in the integrands of equations (2) through (7)
are functions of the blade angle which in steady-state operation would be
constant with respect to azimuth angle and equations (4) through (7) would be
zero. In cyclic control operation the blade angle is made to vary during the
revolution. Let the blade angle be represented by the function

B(¥-¥,) = 8y *+ vF(y-¥) (11)

where y is the maximum value of the cyclic angle, and f(¥-¥y) represents the
variation antisymmetrically of the cyclic angle added to the blade angle during
a revolution of the blade (e.g. this function is simply -cos(y-¥,) for
sinusoidal variation of blade angle). Then the thrust coefficient for a given
blade rotational speed and advance ratio, varies as

Cry-v,) = CylBy + vf(v-v,)] (12)

where the right side denotes that CT is a function of the term inside the
bracket. Equation (12) can be expanded into a power series in terms of vy, thus




| I
v=0 3y /. =0 21 3y =0 3 Y =0
The coefficients of the y series are obtained by taking partial derivatives
of equation (12), and letting y be zero. Then
v=0
Cr = C;lB, + vF¥-¥,)] = CTO
aC 3C v=0 3CT
T. T f(w—wo) = ———9-f(w-w0)
3y alsy * vf(¥-v,)] 38,
22C, 22C; , v=0 3°Cr, )
5 = , 5 [F(v-¥)1° = ——= [f(v-¥)]
o™ aley + vf(¥-v,)] 98,
Then equation (12) can be written as
2 .2
3C1, Yo 3 CTO 9
Co(y-¥ ) = Cr +7 fy-v ) + — [f(v-v, )]
T 0 T 0 ; 2 0
0 38, 2! 3B
0
Y3 a3CTO ;
+ o 3 [f(y-¥)]" +
3! 380
n
yn 2 CT
— —& [f(ey )"+ L (14)
n! 860

when CTO is the steady-state thrust coefficient (y = 0) which is a function
of By. Thus in equation (14) the cyclic variation of thrust is expressed
simply in terms of steady-state thrust derivatives with respect to blade
angle.



A similar expansion gives the power coefficient as

aCp., v 2%, 2
Cp(w-wo) =Cp +y— f(w-wo) + — 5 [f(w—wo)] +
0 98 2! 9B
0 0
y3 83Cp 3
— —3 [fr-v)]
3! e,
n n

y 3 Cp n
+ — n° [f(w-wo)] + ...

n! aBO

An expansion for the product of radius center-of-thrust and thrust,
results in

3(p7,C1,)
p(¥-¥.) Cr(v-¥ ) = o7 Cp + v —2 2 f(y-y ) +
0 0 380
¥ BZ(DTOCTO) 2
—'“ 2 f(‘{‘-‘{’o)] +
2 28,
n n
Y 9 (OT CT ) n
b— 0 0 ey )] o+ L L.
1 n 0
! 98,

An expansion of the ratio of power to radius center-of-power gives

Cp Cp
Co C 3(5‘2) 2 82(‘—9) 2
plv-tg)  Cpg Po "Po
=Sty fy-v_ ) + — 5— [f(y-v )] +
ep(¥-¥,)  p 38, 2! a8,
n,Po
yn 3 (55—0 n
+— = [f(v-v )]+
n! CL

10




Inserting equations (14) through (17) into the corresponding integrands
of equations (2) through (7), and noting that f(¥-v¥y) is antisymmetric so
many of the integrals are zero, leads to the solutions

1 1 « Ip a"C
" T n
Cro = Cr + =1, Co y“+— 3 01 (18)
Tav = *To = , P2 7T 2 ned nl aBOn
even
n
1 1 » I 9 C
no2 n p n
Cp.. =Cp +—1,C v°+— 1 —— ¥ (19)
Pav.~ "o Ty P2 TP 2 n=4 nl ag "
even
1 1w I, 3"(0-C.)
! Mn 7T n
C =-—-—1I1,(pCs)y -~ 1= vy =C_cot vy (20)
m g MIVTT 4n=3 n! ag" n 0
odd
1 1 e Iy 3" (0.Co)
Nn T°T’ n
C =-—1,,(pCs) vy -— = vy =C_ tan v (21)
n 4 NIYY'TYT 4 n=3 n! 58 n m 0
odd
1 C, 1 = I, 3"(Co/op)
Cy=-— L () y-— & M PPL e oty (22)
Y M1 - n N 0
2m pp 2m n=3 n! 330
odd
1 C, 1 = I, 3"(Cy/op)
= — Ly y+— ¢ NPT ¢ tan ¥, (23)
2m op 2r n=3 n! 880
odd

11



where the I- integrals are defined as

1 2m
- _ n
IPn = '[ [f(v wo)] dy (24)
T o
] 2w
- n
IMn = — ,[ [f(w-wo)] cos v dy (25)
m
0
1o . n=odd
INn = ;— [f(w-wo)] sin v dy = IMn tan ¥ (26)
0

In equations (18) through (23), the single prime indicates the first partial
derivative with respect to By, the double prime indicates the second partial
derivative with respect to Bo, etc.. Equations (18) through (23) are
mathematically exact series but rema1n genera11zed in that an arbitrary cyclic
antisymmetric function of ¥, represented by f W ¥.), can be inserted through
the I-integrals of equations (24) through ( ?h

are derivatives with respect to steady-state b]ade angle of thrust and power
coefficients, or of products or ratios of thrust and power with blade radius
center of thrust or power.

Cyclic function of cosine to m-power. - The cyclic function giving a
sinusoidal variation and distorted sine variations of blade angle are of
immediate interest. Let

f(w—wo) = cosm(w-wo) (27)

where m denotes odd integer powers or odd integer roots. The integrals of
equations (24) through (26), with equation (27) are

! 2 0 , a = odd | (28)
- ary_ - 28
IPn' ,[. cos (v wo) dy a F(Eig) a = even
T o 2
+1 )Wr +
(a )W/"—T-P(EI_Z_Z)

12

e factors of y" in the series




+
- 2 (%4 1
1 J‘ 2 ) «/__ cos v a = odd
I = - cos (Y-¥ _)cos¥ dy = a+3
Mn . ) T (== 5 (29)
0
0 , @ = even

—t
|

] 2m 2 I'(a+2) .
Nn S _]ﬁ cosa(w-wo)sinw dy N3 r sin ¥y, a = odd

m o - (30)

o
-
fo )]

il

even|

where a=nm, T is the Gamma function, and a = odd, means odd integers or

odd fractions, 1/3, 1/5, etc.. Using various values of m in equation (27),
the effect of the function f(w-wo) can be assessed by evaluating the integral
factors in equations (24) through (26). With equations (28) and (29), the
integral factors for the first two terms in the series, are

cyc]ig-cgrve factors for factors for
m description CT or CP Cm or CY
eq. (28) eq. (29)
m
cost{¥-¥p) 1 Ipp | Ipg | I T3
1 sinusoidal 1.00 0.75 | 1.00 cos ¥, 0.75 cos Y
1/3 bulged-out 1.43 1.16 | 1.16 cos ¥, 1.00 cos ¥y
1/5 bulged-out 1.60 1.36 | 1.20 cos ¥, 1.09 cos ¥,
0 step-function 2.00 | 2.00 | 1.27 cos v, 1.27 cos ¥,
3 reflex 0.63 0.45 | 0.75 cos ¥, 0.49 cos ¥,

The integral factors for C, or -Cy determined from equation (30), are the same
as those for C; or Cy, except sin ¥, replaces cos Yy, that is, the tan Yy,
relation of equations (21) and (23) holds true. As an example, the integral
factors inserted into equations (18) through (23), for the sinusoidal curve,

m =1, appear as

13




1" 2 75 Y 4

Crav " Cro =30 v * gl v ]
1.2 75 Y 4

CPav " b Ta b Y gl v

B . 75 iri3
= T (pTCT) Y COS ¥, - “5r (DTC ) Y COS ¥,

C, = C., tan ¥, > (31)

Cy = L (Co/ )' cos ¥ _ - 415—(0 / )"' 3 cos v
Y = T2x \vp/Ppl Y o~ 12w ‘“P/Pp Y 0

CN = -CY tan Wo J

Examination of the IM1 factors in the table shows that the step-function
cycle generates the largest moments and forces, about 27 percent greater than
that of the sinusoidal cycle. However, as shown by the Ip2 values, the extra
power required is double that of the sinusoidal cycle. In the step-function
cycle the maximum blade-pitching acceleration becomes infinite.

Cyclic function for most moment with least extra power, also, with minimum
blade-pitching acceleration. - For cyclic control an objective is to get the
most control of forces and moments with the least extra power requirement. A
relationship between moment or force and extra power can readily be obtained
from equations (19), (20), and (22). Up to moderate values of the y-angle, the
second integral terms in equations (18) through (23) are negligible, then
equation (19) for extra power can be written as

P 2
C -Ch, =——1,, v
av P0 4 p2
Solving for y
CP - CP 1/2
- av 0
Y 2 n
Cp Ipy

14




then with equations (20) and (22)

[ 2\1/2[c, - Cp \1/2 )
-1 _ 1M av 0 !
Cm s - I IM-I(DTCT) Y = - 211 i (pTCT)
P2 Cp
2\1/2 (32)
c - Cp \1/2
L G - 1_(1_@_ o, o) )
Cy = - — L,; (=) v m |1 0
y 2r M ‘o, P2 Cp p )

For large magnitudes of control forces and moments for a given power expendi-
ture, then, as shown in equation (32), the square root of the ratio of IM12 to
Ip2 should be as large as possible. With the general cyclic function of equa-
tion (27), and equations (28) and (29), values of this ratio for various values
of m are as follows:

m | 1 i 1/3 L]/S I 0 . 3 '

77
(IM]Z/IPZ cos? v l 1 [ .97 l .95 l .90 l .95

o)

As can be seen, the sinusoidal cyclic function, m = 1, gives the best value,
however, this square root ratio is not very sensitive with cyclic function
since only a ten percent loss is shown for the extreme conditions of a step-
function, m = 0, cyclic variation.

These m values, other than one, are rather strong distortions and lead to
high acceleration points during the cycle. A small variation from sinusoidal
that uses the next symmetric harmonic is given by

f(y - wo) = k cos(y - wo) + (1 - k) cos 3(vy - wo) (33)

which equals the required unity at v - vo ='0. Inserting equation (33) into
equations (24) for n = 2, and (25) for n = 1, results in

Ip, = K2+ (1 - k)°
(34)
IM] = k cos ¥
then the square root ratio is
2 1/2 | |
1 cos V¥
(WQIL_) - g : (35)
- 2
2l e dgh Y

15



Equation (35) is maximum with k = 1, which is, as before, the sinusoidal
variation. However, equation (33) will be examined for minimizing angular
acceleration peaks. Let v = wt, where w is angular velocity, and t is time.
Taking the second partial derivative with respect to time of equation (33)
gives the angular acceleration of this cyclic function as
32 fly - v,) o
5 = kk cos(¥ - ¥,) +9(1 - k) cos 3(v - wo)] (36)

ot

The conditions for minima are obtained by differentiating once again and set-
ting the results equal to zero. Thus

w3[k sin(y - vy) +27(1 - k) sin 3(y - v )]

(37)
= ,3[81 - 80k + 108(k - 1) sin?(y - v )] sin(y - v,) = 0
then
. 2 _ 80k - 81 _ - 81

The angular acceleration per angular velocity squared for the sinusoidal cycle
is given by k = 1 in equation (36). With the k of equation (38), the maximum
angular acceleration per angular velocity squared equals 90 percent of the
sinusoidal maximum, as shown in the following comparison:

2
w2 Btz
LA P deg 0 15 30 45 60 75 90
sinusoidal 1.000 .966 .866 .707 .500 .259 0
k = 81/80 .900 .899 .877 .795 .619 .342 0

Since vibration fatigue depends on the maximum stress, or acceleration, and
little on the time rate of change of acceleration, then this k = 81/80 function
of f(v - ¥o)>which is little different from sinusoidal, may be optimum. From
equation (37), at v - vo = 90 degrees, the k = 81/80 cyclic function has a

time rate of change of angular acceleration which is 35 percent larger than
that of the sinusoidal cyclic function. From equations (33) through (35), the
k = 81/80 cyclic function integral factor characteristics are

16




]
f(y - wo) = 30 cos(y - wo) - g C€OS 3(y - ¥) B

_ 81 _
Ipy, = 1+ 3505 = 1.0253
] b (39)
IM] = gﬁ-coswo = 1.0125 cosv0
) , /2 1/2
(Iy;/1py cOs7y ) = (1 - 1/6562) 2 1.000 J

The blade angle cyclic variation, cyclic forces and moments, and thrust and
power, for the k = 81/80 cyclic function, are obtained by inserting equation
(39) into equations (11) and (18) through (23). Comparing the k = 81/80
cyclic function characteristics with those due to a sinusoidal cycle (eq. 31),
the k = 81/80 cycle has the same moment and force ratio per extra power, 1.25
percent greater moments and forces, 2.53 percent more extra power required,
and ten percent less maximum blade angular acceleration which helps delay
fatigue.

Denotation of CT linearity with J by CT*. - In equations (18) through (23)
the partial derivatives of thrust and power with respect to blade angle are
obtained from steady-state experimental propeller charts or from steady-state
propeller or rotor theory. Steady-state thrust coefficients tend to become
nonlinear with advance ratio as advance ratio becomes small. This nonlinear-
ity is primarily due to the increase in angle of attack on the blade with less
increase of Tift, as that of a wing approaching stall. In addition, the induced
inflow velocity becomes proportionally larger at smaller advance ratios. The
blade with cyclic-blade angle sheds plus and minus starting vortices which
induce velocities that keep the flow on the blade attached, and the added then
Tessened induced inflow velocity during a cycle tends to nullify. These non-
steady effects thus approximate a thrust linearity with advance ratio as shown
below.

- 14 .
o CT’ Tinear with J

g, deg

J

With flow remaining attached under cyclic control conditions of no net
inflow, there would be no drag rise which leads to power increase. Hence the
partial derivatives with respect to blade angle involving power coefficients
are taken directly from steady-state experimental data or theory. Taking into
account the non-steady effect on thrust coefficient, all the derivatives involv-
ing CT are with CT linear with J, denoted by C1*, for either experimental or
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theoretical steady-state propeller or rotor data. Then equations (18) through
(23) become

e -c. =l 2.l % Ipn . (40)
Ty T, FP2°T Y T2 N en Y
n=14 0
even
n
o I 3 C
1 S Pn P n
b -Cp =71,,C v +5 1z —1 (41)
av P 4 P27P 2 =aM 360n
even
- _ 1 *rw ) 1 I an(p$C$) n
Cp = Cp oot ¥, = -7 IM1(pTCT) Y- I-n E 3 n! 2 N Y (42)
odd °
n
C o L. 3 (Cp/pp)
1 P 1 Mn P/PP/ p
C, = -C,coty =-5—I1,.(—)'y ~5— = Y (43)
Y oN o~ T 2r MYy T C g "~
odd

where the I integrals are given in equations (24) and (25), and pf is the
radial position of the center of linear-with-J thrust.

Cyclic-Control Solutions in Terms of Bessel Functions

The integrals of equations (2) through (7) for the sinusoidal cycle can be
directly evaluated in terms of Bessel functions since they already contain
the integral representations of the Bessel functions. These integrals are
characterized by trigonometric functions as arguments of trigonometric functions.
For example, from reference 6

m

(44)

N —

= ] 1 sinsz cos(y cosy) dv, v > -

Thus the use of Bessel functions provides a closed solution which is valid to
large values of the cyclic angle, ¥.

Averaged cyclic thrust and power. - The linear with J steady-state thrust
coefficient is expressed as a Fourier series in Bos thus

0

C (a

n=20 n

™

- cos ng_ + b sin neo) (45)
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The sinusoidal cyclic-blade angle is given by
(v - v)) = 8y - v cos(y - ¥) (46)

Substituting g(vy - wo) of equation (46) for By in equation (45), results in

) {}ancos ng, * b,sin nso)cos[ny cos(y - Wo)] -

n
In o 8

(-a,sin ng, + b cos ng,)sinlny cos(y - wo)i} (47)

A simple means for obtaining the relationship between integrals of trigonometric
products and Bessel functions is by use of the following series:

cos(y siny) = J (v) + 2 Jy(y)cos 2v + 2J,(y)cos 4y + . . . h
sin(y siny) = ZJ](y)sin Y o+ 2J3(y)sin 3y +2J5(y)sin By + . . . k
(48)
cos(y cosy) = J (y) - 23,(y)cos 2v + 2J,(y)cos 4v - . .
sin(y cosy) = ZJ](y)cos y - 2J3(y)cos 3y +2J5(y)cos 5y - . . .]
and noting that
2m 2m W
[ sin myY sin ny dy = J cos m¥ cos nt d¥ =0, m#n
0 0
2w 2n
[ sin? ny dy = I cos2 nydy =7, n#0 (49)
0 0
2m
J sin my cos ny d¥ = 0, all mand n J

0

where m and n are integers,

The integration of equation (2) with equations (47), (48), and (49), results in
the average thrust coefficient, thus
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(e
*
]

I ™ 8

(ancos ng, + bns1n nsO)Jo(ny)

o C%O - ) E : (ancos ng, + b,sin nBO)[1 - Jo(ny)] (50)
Similarly, for the power coefficient, let

(c,cos ng, + d sin ng ) (51)

then

o
1
o
t
n g

] (c,cos ng, + d sin ng )[1 - J (nv)] (52)

Cyclic pitching and yawing moments. - For integrating equation (4) to
obtain Cy, the product of the radial center of thrust and the thrust coefficient
can be represented by another Fourier series. However, since pf does not vary
much with 8g it can be approximated as follows:

p-*r = p:’f [] + kTSin(Bo - B'I)] (53)

(54)

where pfo is the radial center of blade, Tinear-with-J thrust at blade angle
Bo = B1, and B] is the blade angle at p = 3/4 at which the blade pitch ratio,
p/D = mptan B_(p) is relatively constant with p, that is, pg = constant, then
B = -paB/dp. The constant k7 defines the magnitude of the change of radial
position with blade angle. Substituting Bo(¥ - ¥o) of equation (46) for gg

in equation (53), and factoring this of function to equation (47), the inte-
gration of equation (4) results in

C_ = %— p? cosy % . {%(-ansin ng, + bncos nso)J](ny) +
kp(-a sin ngy + b cos ng )sin(g - 6)[3;(ny + v) + I (ny - v) ]+
kp(a,cos ng  + b sin ng )cos(g, - 8)[d;(ny + v) - Jq(ny - Y)i} (55)

As an example and a check, let the thrust coefficient be given by Cf = b] sinso,
then equation (55) reduces to
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1 .
C, = z—b] p?ocoswo[ZJ](y)cosso + kTJ](Zy)sm(Zs0 - 8])] (56)

which is the sinusoidal cycle solution for any value of y. If the Bessel
functions are expanded to the third power as

3

|><

_ X
h1(x) =35 - 3

[e))

then equation (56) becomes

'l .
Cm = E'bl p?ocosWO{?cosBo + kTs1n(260 - 81)]Y -

1 . 3
g [coss, + 4ksin(2s, - 81) 1y }

The check of this example solution is that the power series method of equation
(42), through n = 3, 1eads to an identical equation. That is, by using

f(w - vg) = ~cos{y - v ), from equation (46), then IM} = -1, IM3 = -3/4, and
o5C¥ is the product of eSuat1on (53) and by sing,

The integration of equation (5) for C_, is the same as for C except
a factor sinwo replaces cosy,. Then as before

Cn = Cm tan‘{’0 (5)

Cyclic side and normal forces. - For integrating equation (6) to obtain
Cy, an approximate expression for the radial center of torque or power, Pp,
can be made as developed for PT in equation (53). Let

1 .
on QP [1 + kpsin(g, - 8;)] (57)

where PPy is the radial center of power at the same conditions cited under
equation (53), and the constant kp defines the magnitude of the change of
radial position with blade angle. With the sinusoidal cyclic-blade angle of
equation (46) inserted into equation (51), the cyclic power variation is

Cp(w - Wo) = ! z . <Ecncos ng, + dnsin nso)cos[ny cos(y - WO)] +
(cnsin ng, - dncos nso)sin[ny cos(y - Wo)i} (58)
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Substituting Bo(Y - ¥o) of equation (46) for Bo in equation (57), and factoring
this 1/fp function to equation (58), the integration of equation (6) gives

cosy
0
C

"N~ 8

vy = 2ﬂpp LN {?(—cns1n ng, + dncos nBO)J](ny) +
0

kp(-c sin ng, + d cos ng )sin(g, - )3y (ny + v) + 3,(ny - ¥) ]+

(plycos ngy + dysin nag)cos(s, - )03y (ny + 1) = 9y(ny - 1)1p (59)

which, except for notation changes, is the same equation as that for Cy in
equation (55).

The integration of equation (7) for Cy, is the same as for Cy except a
factor sinyy replaces cos¥g. Then as before

CN = —CY tan\y0 (7)

For the same reasons as those given in the section, Denotation of Cy
Tinearity with J by C¥, the steady-state thrust coefficient in equation (45)
is the CT that varies linearly with advance ratio J. However, the steady-state
power coefficient Cp in equation (51) can have a nonlinear variation with
advance ratio.

Estimation of Phase Angle

With cyclic control the blade has a variation of angle of attack during a
cycle or blade revolution and the blade 1ift builds up and decreases in a har-
monic fashion and appears as unsteady motion. As angle of attack increases,
circulation increases, and a starting vortex is shed which induces a downwash
and changes the build-up of circulation. In general, unsteady motion causes
the Tift cycle to be out of phase with the angle of attack cycle. An approxi-
mation for the propeller phase angle can be obtained from an analogous wing
unsteady solution. In reference 4 an equation is presented which gives the
phase angle lag of forces and moments due to harmonic pitching of a wing about
the quarter-chord line, given by

vop = 0.825 tan~! 2.027k (60)
bw. .
K = _pitch (61)
7V
eff

where the phase angle is almost independent of aspect ratio. In equation (61)
k is_the reduced frequency, b is the section chord, and wpjtch is pitching

angular velocity. For the cyclic-control blade the pitching is at the blade
rotation, then
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wpitch = 2mn (62)

The effective velocity the blade senses is VR as shown below, in which slip-
stream rotation is taken into account.

w = vtan¢
v
R
)
¢
~Znnr
Then for the single propeller or rotor
1/2
_ 2 2 _ V+vy
VR = [(2mnr - vtang)” + (V + v)7] , tan¢ = ey = vians (63)

Solving the second equation for vtan¢, results in

2

vtang = mnr - [(mr)° - (V + V)V]1/2

then with J = V/nD, o =r/R, VR in nondimensional form becomes

<Z

1/2
ﬁ%-= {%—wz o2+ 3(J + ﬁ%) + ﬂp[%-ﬂz of - (d+ ﬁ%)ﬁ%ﬂl/%} (64)

From momentum theory

fo—

v 2, 8 ~,1/2
np = 2l F =5 )0 -] (65)

N

where t is the tip-loss correction, for which approximations developed by L.

Prandtl are given in references 7 and 8. A modification of Prandtl's correction
is

. v
sin ¢ J + —
t=1 - °0-q. nD (66)
B V.
B oD

which can be evaluated by iteration with equations (65) and (64) for p = 3/4.
Equation (65) inserted into (64), with p = 3/4, for a single rotor, is
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<

L 128CT e 8CT 1/2
4-——) =4zt 5 (1 - %) [0+ (3% + —91/27 % (67)
311D Jgingle {2 2 32 92 2

O 1 TT

For counter-rotating rotors, which are near each other along the axis, w is
approximately zero. Letting the vtan¢ terms be zero in equation (63), then

+
tang = gnnrv (68)
and Vp with o = 3/4, using equation (65), is
g 'R g 2 Ty 10|12
3nnD> i Ul 2o 201 C UL C Aty e A (69)
counter 917t 9n Tt

where Cy, is the thrust coefficient of one of the two counter-rotating rotors,
or one-half of the CT, of the total propeller. From equations (61) and (62),
the reduced frequency is

- av (70)

where B is the number of blades on each rotor, and o is the effective solidity
of each rotor, defined in the relation
b
_ 4B "av
973D (71)

The phase angle from equation (60), with equation (70), is

b
6.368 /49
-1 bav B
y .= 0.825 tan (72)
ph 4 VR
37 nD

where the denominator in the arc tangent function is given in equation (67) for
the single rotor, and g1ven in equation (69) for each of the counterrotating
rotors. The phase angle is the azimuth angle lag which thrust and torque lag
the blade angle variation. Thus, maximum thrust occurs an angle ¥pp after maxi-
mum blade angle. The basic azimuth angle, Yo, which governs the components of
the cyclic-control forces and moments, is given in equation (1). By using
equation (1), for counter-rotating rotors, the clockwise rotation rotor has,
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wo = th + Wax + v ,» While the counterclockwise rotation rotor has,

con
con” The ¥, angle can be made the same for the counter-

¥, = "wph + Yax + vy
rotating propeller by using a different control angle, ¥con, On each rotor.
Since the variation of Vp/nD with thrust coefficient is small, the phase
angle will change 1ittle with thrust. The Vp velocity increases moderately
with advance ratio, then the phase angle will decrease as J increases. At
static conditions, J = 0, the phase angle will slightly increase with thrust
increase for the single rotor, and decrease with thrust increase for each of
the counterrotating rotors.

This derivation of phase angle is based on the wing, or blade, with non-
separated flow. If the cyclic-blade pitching is made about the stall cy of
the blade, then it is operating in a cg ~ o hysteresis loop in which the air
adds energy to the blade. Then the phase angle is approximately given by a
negative value of equation (72) when k < 0.3, as shown by an experimental
example in reference 9.

CYCLIC-CONTROL COMPARISONS OF THEORY WITH EXPERIMENT
AND EVALUATION OF EXTRA POWER

The cyclic-control theoretical results of equations (40) through (43),
and (50), (52), (55), and (59), are based on knowing the steady-state values
of thrust, thrust Tinear with advance ratio, and power coefficients. Here
steady state refers to the condition that maximum cyclic-blade angle is zero,
y = 0, and Ct, C?, and Cp versus J for the given propeller are obtained from
available propeller chart data, or from a favored propeller theory. An approx-
imate steady-state prediction method from reference 4, for estimating thrust
and power coefficients and their derivatives, is further developed and pre-
sented in appendix B. The experimental study reported in reference 1 contains
propeller cyclic-control experimental data and steady-state data for J = 0.
The objectives are to show an example usage of the theory, correlate with
experiment, and develop relations for extra power due to cyclic control. The
cyclic-control power is the ideal power plus extra power where extra is that
power other than ideal traceable to the varying cyclic-blade angle.

Comparison of Theory with Experiment
When the cyclic-blade angle v is small, then the terms yn forn> 2

are negligible. Then equations (40) through (43) for the sinusoidal cycle,
f(y - vo) = cos(y - vg), simplify to

C, -¢C .
av T _ 1 C? (73
7 "7 T )
Y CT T
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Y Cp 4 P
ideal
Cn - Ch Lo
C—l = C—Y- cot WO = - T (p:’f— — t = p? )cos ‘{’0 (75)
T T T “T
E.Y_l = - CN_Y cot v = - _1_ [_1._ (_:i + (-]_) .]COS Y (76)
CP CP 0 2m Pp CP Pp 0

In the experiment, all the quantities on the left side of equations (73)
through (76) are measured at the condition of J = 0. Also the steady state,
that is, Y = 0, thrust and power coefficient are measured at J = 0. In this
section the experimental steady-state values of CT and CP are used to determine
the thrust and power derivatives. Using these derivatives, the theoretical
values of cyclic-control forces, moments, change in thrust, and change in power,
are determined from equations (73) through (76), and compared with measured
values.

Cyclic-control moment and change in thrust. - The experiment values of CT
were measured at J = 0. For the cyclic-control theory a relation between CT
and C¥ is that in equation (B18) of appendix B. Since both 3CT/3J and JoT in
equation (B18) are functions of 8y, then the C¥ derivatives are obtainable. An
approximate CT ~ CF relation is given in equation (B10), and Cf derivatives in
terms of Cy derivatives are given in equations (B19) through (B22). These
derivatives are applicable for the J = 0, CT measurements.

The geometric characteristics of the propeller used in the test are as
follows:

b
B = 3, —%l = 1178, 0 = .15, B, = B + e, € = 2° )

J=0,«k=.9, 6 =.015, By = 17°, d_ = .025 g

0 0 (77)

er = .343, ep = .634, JoT = 2.246 tan By

-

where o, 8y, do» eg, eps and JoT _are determined from equations (71), (54), (B9),
(B3), (B4), and (B5), respectively. Curve fitting a function for the experimental
static steady-state thrust data, leads to the relationship

C; = .296 sin(2s + 3°) (78)
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then the derivatives with respect to g are

Cr' 2
CT tan(2g + 3°)
C n
T
——= -4 (80)
Cr
An approximation of the fT function is given in equation (53). The deri-
vative with respect to gy is
oI = o3, kg cos(g, - 8;) (81)
For typical propellers
. 2 5 1
ST I B=Y AS TN (e (82)
With the values of equation (77), and with equations (53), (81), and (82),
equations (73) and (75) become
C - C 1]
o Ty T o @)
2C 2C 4 CT
Y T Y T
: ) ct 1/2
€ {E] + .381 sin (Bo - 17°)] E;—-+ .381 E
(84)

m
Y -
CT Cos ¥,

cos(g0 - 17°?}
where CT /CT, and C?"/CT, from equations (B19) and (B20), with equations (79)
(85)

and (80), are
ET]E1/2

ET T
27

cx'
= [ 2 +
tan (28 +3¥

—
|



it ] 1 "

CiT =[-8+ 5 (22 ¥3) Ei - %'(Ei‘QZ * %‘E%}fJET]/Z (86)
where from equations (B12), (B21), and (B22), ET and derivatives are

B =1+ .7383 (1 +.375 sin 28,)° (87)

E; = 1.1030 (cos 28 + .1875 sin 48, ) (88)

Er = 2.2059 (.375 cos 48, - sin 28) (89)

The values determined from equations (78), (83), and (84), are compared
with experiment for given values of blade angle, as follows:

CT ACT/YZCT —CmY/CTcos WO
B Bo .
eq. | experi- eq. eq. |experi-
deg | deg (78) | ment (83) (84) | ment
8 10 .0963 .092 - .213 1.438 | 1.33
10 12 L1561 L1112 - .493 1.222 | 1.22
12 14 1344 1 134 - .708 1.066 { 1.03
14 16 L1525 | .153 - .808 .946 .93
16 18 .1698 172 -1.024 .849 .85
18 20 .1863 | .188 -1.168 .767 .78
20 22 .2019 .203 -1.256 .696 .72
22 24 .2164 .216 -1.350 .632 .66

As shown in these results, the CT of equation (78) duplicates CT of the experi-
ment quite accurately. For y not large, the theoretical thrust loss is negli-
gible at small 8, but with greater loss at large blade angles. In the experi-
ment the thrust has a slight loss only at the higher g angle. The pitching
moment coefficients correlate within the accuracy of the measurements.

Cyclic-control force and ideal change in power. - Development of an analy-
tical function for a curve fitting the experimental static steady-state propeller
power data, Teads to the relationship
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2 .
C. = .pgp tan” (g + 11%) (90)

P cos38

then the derivatives with respect to g are

P _ 2
CP tan (g + 11

07—+ 2tan (g + 11°) + 3 tang (91)

¢
LA + 11 + 6tan” (g + 11°) - 6tan’s + 6 = tang  (92)
P tan” (g + 11°) P

where g = By - 2°.

The function 1/fp is needed in equation (76). An approximation of 1/¢p
is given in equation (57). The derivative with respect to 8, is
' k
1 P
—) = —cos - 93
;) = 5o cos (8 = 81) (93)
)

For typical propellers

8, . 1

o FTT 0 % 2 TIST (6 ¥ 5°) (94)

With the propeller values listed in equation (77), and with equations (57), (93),
and (94), equations (74) and (76) become

AC C - C "
S ( o -} (95)
2 2 "7 o
v % fdea P
CYY CP'
Ccos 5 - --2188 q[1 - .243 sin (g, - 17°)] £— - .243 cos
P 0 p
(8y - 17°)1 (96)
S
where C,, Cp', and Cy'' are given in equations (90), (91), and (92), respectively.
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The values determined from equations (90), (95), and (96) are compared
with experiment for given values of blade angle, as follows:

2
CP ACP/Y CP -CYY/CPCOS Yo
B By - .
de de eq. | experi- eq. experi-| eq. experi-
g g (90) ment (95) ment (96) ment
3 10 .0357 .036 8.574 16.1 1.505 1.17
10 12 .0451 .046 8.039 13.3 1.400 1.28
12 14 .0563 .057 7.704 11. 1.320 1.35
14 16 .0695 .070 7.515 9.8 1.259 1.44
16 18 .0853 .084 7.439 10.7 1.211 1.15
18 20 .1043 .102 7.454 9.7 1.176 1.00
20 22 .1270 127 7.547 10.5 1.151 1.21
22 24 .1546 .155 7.711 8.7 1.134 1.00

It can be seen that the Cp of equation (90) duplicates Cp of the experiment
quite accurately. The experimental data of side force coefficient is somewhat
erratic, however, the predictions show a correlation with experiment of magni-
tude and that CYY/CP decreases with increasing 8. The predicted change in power
due to cyclic control is the ideal change in power, analogous to induced drag.
The obviously higher measured change in power includes the ideal power change,
plus extra or additional power expenditures. This extra power includes power
required effects peculiar to cycle control but nonexistent in steady-state
operation. Extra power characteristics are investigated in a subsequent section.

Extra Power Changes Due to Cyclic Control

Extra power changes include energies due to a vibratory swirl of the
sTlipstream, angled slipstream, pitching airfoil of the propeller blades, and
vibratory structural damping. An estimate of these extra power expenditures
can be made without excessive complication.

Vibratory swirl of the slipstream. - For the steady-state propeller, part
of the power is used to swirl or rotate the slipstream, and this part equals the
time rate of change of the kinetic energy of the slipstream rotation. Similarly,
the cyclic-control propeller swirls the slipstream in one direction, then rever-
ses the swirl during the other half of the cycle, or results in a vibratory
frequency equal to the propeller revolutions per second. Thus the cyclic-control
propeller leaves vibratory swirl kinetic energy in the slipstream which the
steady-state propeller does not. This kinetic energy per unit length of the
slipstream is

K.E.

2

2

I .
L WSW

Noj—
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where the moment of inertia per unit length of a circular column of air is given
by

and @§w is the swirl angular velocity. With cyclic control, ¥syw = ¥swo COS wt,
then ¥Ygy = -¥Yswo 0 s1n wt The kinetic energy in a complete revolution is the
integration of 3 Zows

2n
2 2 .2 _nl 2.2
[0 WSWO w_ sin~ydy = 7L WSWO

where ¥Yswo is the maximum swirl angle due to y. The swirl power is the kinetic
energy per unit length times the velocity increase through the propeller disc,
then with the I/2 expression and since = 2mn

4242
PSw = pamn R WSWO v
or
4
ST y2 v
CP 16 Yswo nD (97)

SW

where v is the average velocity increase through the propeller disc. From
simple momentum theory, for example, reference 7, p. 183, the inflow velocity
in terms of Cp is obtained by the solution of a cubic equation, then

3 2 3
3¢ 2%, ¢ 36wk
v _ 2 A P, % 172073 P ) P,
-3ttt (o nz) 1 [27 * (77
2
C J=0 2C
p p
2)1/2]1/3 S E 173 (58)
¥i1

Similarly, the maximum swirl angle can be estimated from momentum theory. Then

2C p =2/3 9€C
(1 - Ly = -—%%

1 -
2 swo)(?'wswo) 32 5
T P L
where here CT = CT(Bo + y) - C¥(8o). This Ct can be approximated by using equa-
tion (B1), then

9e

=T .
Youo = 3 (2.2 cosg, + J s1nso)y (99)
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With equation (99), the power expended for vibratory swirling the slipstream,
equation (97), becomes

CP %

25 = ::—— (E—T—)2 (2.2 cosg, * J sinBo)
Y CP p T

2

=

v
i) (100)

where v/nD is given in equation (98), and e in equation (B3). For J = 0,
equation (100) simplifies to

C 2
Psw &1 2
= 2,136 —555 c0S~ B (101)
2 2/3 o
Y Cp Cp

Angled slipstream. - When the cyclic-blade angle is applied for pitching, a
side force is developed. The reaction to this side force produces a slipstream
angle opposing the side force. This slipstream angle, represented by ey, equals

(]

C
E’Y = ‘tan_‘I _Y = __Y_
T T

or for an arbitrary angle of yg, and using equation (7)

e = (C, cos¥ - C, sinvy ) = CY
C Y 0 N 0 C

— 1 (102)
Y oG 7€0sY,

Because of the conservation of momentum, due to slipstream constriction the
slipstream velocity increases approximately as

V.,

z _JO =
Vj(eY) cos <, , Wwhere Vj0 V+v
From momentum theory
_ 2 2
P = 2mR pavjo (Vjo - V)
2
V.
2 Jjo
P =2TrRQ —»(V -VCOSE)
c a c053 £y Jjo Y
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The ratio gives

C
P. i 1 (Vjo-VCOSeY) _ 1 0. (1 - COSEY)J]

Cp cos” ¢ Vjo -V cos” ¢ v_

Y Y nD

with equation (102)
1o+ tanbe )32 27+ 3 i )2
COS3e 2 CT cosw0
Y
C
_ L2 5y 21 Y 2

1 - cose = 2 sin =5 (CT coswo)

With these relations, the change in power coefficient, CP - CP’ is the angled
sTipstream power coefficient, given by

g =3 2 J
2an - §'(C cosY ;- (- v ) (103)
¥ Cp T 0 3 D

where v/nD is given in equation (98). Equation (103) is an estimate of the
fractional power increase due to the angling of the slipstream due to cyclic
angle y. It can be noted that for the counterrotating propeller if one rotor
operates at ¥y, and the other rotor at = - Y5, then by equation (82) the net
Cy is zero. Thus from equation (103), is zero, and from equation (102),

. CPang
€y is zero.

Pitching airfoil of the propeller blades. - Energy is imparted to the
airstream due to forced pitching of an airfoil. An estimate of this energy per
unit time is given in reference 9, page 169. For pitching airfoil blades, the
power due to blade pitching is

P, = 15 o BR b* 3 |2

where in coefficient form is

c
P 4 b
b ~av,yé
5 B(-3 ) (104)

4ﬂﬁ

where bav/D is related with effective solidity in equation (71).
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Vibratory structural damping. - The power absorbed in structural damping
in a propeller is small, but can be larger for the less rigid helicopter blade.
Structural damping is discussed in reference 9, page 227. The power expendi-
ture for damping, due to pitching, is approximated as

2 ™
BI g w
- _a’aq QB_Z y=T 22
P damp % [0 (3¢)° d¥ = 3 BL g u,

where I, is the moment of inertia of the blade, wy is the natural angular
frequency of the blade, and gy is the damping coefficient which is a fraction
of the elastic coefficients. Empirically, g4 is found to depend on the ampli-
tude_of motion,and power could probably be better represented as proportional
to y3. The moment of inertia of a blade is approximately

4

2yp%p

Iaé‘]—“gpbt(1+t

where pp is the blade density, t is maximum thickness to chord ratio, b is
blade chord, and D is propeller diameter. Then the structural damp1ng power
coefficient is
C
P 5 b P
S - 5 B39 0+ ) (7 L g (105)

Y2 3 a

where pp/pa is the ratio of blade density to air density.

Total Power Comparisons of Theory with Experiment

The total power is the sum of the ideal and the four extra power require-
ments of the cyclic-control propeller or rotor. The test propeller character-
istics are listed in equation (77). In addition, estimates of the blade
density ratio, natural angular frequency of the blade, blade damping coefficient,
and thickness ratio are

D2

(59) Z 4000 3

P

59- = 2200
a (106)
L E 1072

t = .09 J
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which approximate that of an aluminum blade with tip speed of about .8 Mach
number. The damping coefficient of a wing is typically of the order gy = 10-3
to 10-2. The propeller blade is much more rigid than a wing and g, is assumed
to @e one percent that of a wing. For these propeller values, the power coef-
ficient changes due to cyclic-control are compared in the following table:

2Cp/¥5Cp

B ideal swirl | angled | pitch. | struc. | theory | experiment
deg eq. eq. eq. eq. eq. total,
(95) (101) | (103) (104) (105) 5-part

8 8.57 2.61 .44 .40 1.20 13.22 16.1
10 8.04 2.23 A2 .31 .93 11.93 13.3
12 7.70 1.92 .42 .25 .75 11.04 11.6
14 7.52 1.67 .45 .20 .60 10.44 9.8
16 7.44 1.46 .50 .16 .48 10.04 10.7
18 7.45 1.27 .58 13 .39 9.82 9.7
20 7.55 1.12 .68 1 .33 9.79 10.5
22 7.71 .97 .86 .09 .27 9.90 8.7

The proportion of power expenditure due to vibratory-swirl is relatively
large and it appears this could be reduced by synchronized counterrotating
blades, that is, blades positioned so that maximum swirl is nullified.

COUNTERROTATING PROPELLERS AND OTHER CONFIGURATIONS FOR
ISOLATING CYCLIC-CONTROL FORCES AND MOMENTS

In any control system it is desirable to initiate a given force or moment
without other accompanying forces and moments. For example, to initiate pitch-
ing moment without side force or thrust change, that is, to isolate pitching
moment from the other control forces and moments.
A single propeller with cyclic-control generates
a moment and a force and neither can be isolated.

propeller rotation

~

As shown here schematically, a positive y applied -aft V}$W of
to gain pitching, also gains a side force. The Y S;SEe er
side force comes from the reaction to the side

increased torque on the blade when the blade force

is at a By + v angle at ¥ = n. The + sign M, moment, y at ¥ =«

indicates a positive moment where y maximizes

the blade angle. This single propeller effect, of forces and moments which
cannot be isolated, can be seen analytically in equations (75) and (76). For
any value of azimuth angle in these equations, there will be a force and moment
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combination. However, the counterrotating propeller has unique cyclic-control
qualities of isolating control forces and moments, and in addition, rolling
moment control, that is, moments about the axis. Multi-propellers, in-line,
can also isolate forces and moments.

Counterrotating Propeller

Two blades of the counterrotating propeller with cyclic-control, at two
different operating modes, are shown in aft view as follows:

counterrotating 2% A} \
) }
MY F M
4 BB LLITIIIIL '.'.'.'-z T e Poldivils '..'1 ‘%“m‘: -,_/__:___.-.._. et i . :1
- T - |
axis . Y F Y M -
direction of propeller _ .
rotation ~ v

In the left drawing, with a plus cyclic-angle vy on one blade and a negative
angle vy on the counterrotating blade, the moments cancel, while the reaction
forces add and provide a net translation force. In the right drawing, a plus
angle vy on both the downgoing blade and the counterrotating blade results in a
cancellation of forces and the moments add to provide a net moment on the
propeller plane. Since azimuth angle V¥ is not specified in this example, then
the results apply at any azimuth angle, hence with an azimuth control angle,
forces and moments can be controlled singularly or jointly in any direction

in the propeller plane. Thus the cyclic-control counterrotating propeller has
a built-in capability of isolating all forces and moments or combinations,
without the need of propeller tilt or of net thrust changes. The above left
drawing can be considered as a rotor in a horizontal plane, that is, helicopter
mode, then the cyclic-control force becomes a direction-controllable propulsive
force while the rotor remains horizontal, or untilted. For this configuration
the rolling moment, that is, a moment about the propeller axis or shaft, is
equal to a torque differential made by a blade angle difference between the

two rotors.

Cyclic-control analysis. - The analysis developed for the single propeller
can be applied to the counterrotating propeller by taking into account the azi-
muth angle for control. From equation (1) it can be seen that the azimuth con-
trol angle is linearly proportional to ¥g, hence, ¥, will be used as a displaced
control angle. The cyclic-control solutions with sinusoidal cycle, f(v - vo)
= cos(¥ - ¥g), for the single propeller are given in equations (73) through
(76). For the counterrotating propeller let subscript 1 refer to the rotor
with clockwise rotation, and subscript 2 to the rotor with counterclockwise
rotation. Then equation (73) applied to each of the two rotors becomes
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Cow v m G =+ 2 ™ oo =L 2
Tavl Tm- 7T Mot Tav2 = “T2 ~ 4 Y2 *T2
Adding these two equations gives
a ] 2 * b 2 * 11
Cav "G =70t G ) (107)

For equal and equal operating clockwise and counterclockwise rotating rotors

*x1 * 11! *x b1

CT] =C =C

Then
2) T

1 2
CT - g‘( Y] + Y2 CT (108)

where these thrust coefficients and derivatives are of the counterrotating pro-
peller. Similarly, for the power change

2

(CP - CP)

Cor'") (109)
av ideal P2

1 2 .
7 (7 Cpytt o,

C 11
) —— (110)

P

2 2
(Y] * v,

Co|—

p ideal

When Yy = Yp = ¥, equations (108) and (110) become the same equations as those
for the single propeller.

From equations (75) and (76), define K's as

1 L
= = * * !
=g o e e ()
Cl
L%, .
KY - 27 [QP CP + (pP) ] (]]2)

From equation (75), for each of the rotors

Co1 = “CriKp11160%%01>  Cme = ~CroKpavacosty,
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Then adding

G = ~[onKmmostyy * Croknavacosvop (113)
Similarly, then

Co = ~[orKpmysinegy + CroKpavpsinvg,y ] (114)
With the same procedure, using equation (76)

c, = -[C -C (115)

Y p1Ky1¥7€05¥g1 - CpaKypvpCos¥g,]

C, = C

N CprKypypsinggy - C

p2Ky2v2Sinv¥ e, (116)

where the negative signs of the second terms are because the torque reaction
force of counterclockwise rotation is in opposite direction to that with clock-
wise rotation. For equal and equal operating clockwise and counterclockwise
rotation rotors

Cry = Cpp = G4/2, Cpy = Cpp = Cp/2

(117)
Knt = Knz = Kpo Kyp = Kyp = Ky

then equations (113) through (116) become

EE_= -l-K (v, cos + v,COSYA, ) (118)
C,  Z'mM o1 T ¥2¢0%¥;
Cn 1 .
E;'= —E-Km(Y]s1nw0] + yzs1nw02) (119)
EX—= -l-K (y,cos - v,COSY. ) (120)
Cp T2 YIMEP¥1 T Y2522
Eﬂ-= 1k (y,5in - y,siny,,) (121)
Cp 2 "Mt iMor 7 Y2 Moz

For isolating the forces from the moments, the terms within the parenthesis
of equations (118) and (119), must be zero. Then

Yo _ TCos¥gy cos(m + vy1) v, _ -sinygy  sin(x + ¥o1)

Y] Cos¥y, cosy,, ’ ;;' sinyy,  sinvgy,
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Equating these two equations, ¥p2 can be evaluated as
‘{’02 =g+ ‘PO.I, then Yo 3 M (122)

Similarly, for isolating the moments from the forces, the values within the
parentheses of equations (120) and (121) must be zero. The solution gives

Thus, when the cyclic-blade angle magnitude is the same on both rotors, the
cyclic-control forces and moments can be isolated with a counterrotating pro-
peller by the azimuth control angle on each rotor. With v; = Yo = Y, equations
(118) through (121) become

Cm

A
- 5 Km(coswo] + coswoz) (124)

-

-%—Km(sinWO] + sinwoz) (125)

(e}

<

1
= —E-KY(COSWO] - coswoz) (126)

(@]
©

%—KY(sinwO1 - sinwoz) (127)

-

Cp

where ¥py is the vo of the rotor with clockwise rotation, and vg2 is the vg of
the {oto; with counterclockwise rotation. The K's are given in equations (111)
and (112).

The rolling moment coefficient about the propeller axis or shaft is

I U -
CY‘ - 25 = '4," [CP(BO + Y]) = CP(BO Yz)] (]28)
pan D

where the blade angle of rotor 1 is increased by the angle Y7, and of rotor 2
decreased by Y,, where L is the rolling moment, and the parentheses represent
functional parameters of the power coefficient. Equation (128) is the change in
torque between one rotor and the other, then
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Cp 1
Cp = ~B0q = =z = il (B ¥ 1)~ Cp

: 2(80 - Y2)]

which with Cpy = Cpp = Cp/2 for equal rotors, leads to equation (128).

Equations (124) through (127) are such that any arbitrary control force,
moment, or combination can be initiated by the azimuth angle control of ¥p1 and
¥g2. For the case of isolated moments, ¥p2 = Y01, then

- = _Yz_ _Y=_ 1
CY CN 0, c chost], c Kms1nw01 (129)

2 2)1/2

A Y Y =K, atw =y

T T mn 01 (130)

where ymn is from tanyy, = CnY/Cmy. This resultant moment is acting forward
and normal to the propeller disc at azimuth angle ¥01. For the case of
isolated forces, Y92 = = + ¥91, then from equations (124) through (127)

CYY CNY
c =C =0, E;—-= -KYcoswo], E;—-= KYs1nwO] (131)

The resultant force is

y (c 2 v C 2)]/2
Y. Y Y - K

yo At ¥y = =Yg (132)

where Yyy is from tan Yyy = CN,/Cy,. This resultant force is acting radially
outward ¥rom the shaft at azimuth angle Yyy. Thus to isolate moments, ¥gp is
set equal to Yg1, and to isolate forces, Y02 is set equal to = + %01, and

¥g] is controllable through the ¥con control angle in equation (1)

The cyclic-control analysis for the counterrotating propeller include
equations (108) and (110) of the change in thrust and power, equations (124)
through (127) of cyclic-control forces and moments, equation (128) of rolling
moment by blade angle differential, and equations (130) and (132) of isolated
cyclic-control moment and force. The Km and Ky functions are given in equations
(111) and (112). The extra power required in cyclic-control operation, approxi-
mated in equations (100), (103), (104), and (105), apply also to the counter-
rotating propeller, except for the isolated moment condition. For this condition
the vibratory swirl from the two rotors cancel each other and equation (100) is
assumed zero. In the isolated moment condition, Cy = Cy = 0, then equation
(103), angled slipstream power, becomes zero. Since force along the propeller
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axis, that is, thrust, is simply controlled by steady-state blade angle, then
six degrees of freedom are controllable with a cyclic-control counterrotating
propeller.

Unique cyclic-control characteristics. - The counterrotating propeller
capability for isolating six control forces and moments is particularly ideal
for large lifting-crane type vehicles, for airship and submarine control, and
for tilt rotors. The lifting-crane helicopter can be made to generate a pro-
pulsive force in any horizontal direction by isolating the side and normal
forces, done without tilting the rotor. For hovering, the six degree of freedom
direct control can be maintained without any movement of the aircraft, making
it an exceptionally stable platform. For the same reasons, a cyclic-control
counterrotating propeller, concentric at the tail of an airship or submarine,
can control the hover of these vehicles without vehicle movement, or at forward
velocities can provide six degree of freedom direct control.

Multipropellers In Line

Single rotation propellers when in line as on a planar wing, can be
operated so that some or all the control forces and moments can be isolated.
Examination of control forces and moments can be made from drawings of the
propeller disc, represented by a circle depicting an aft view of the disc. The
curved arrow on top of the disc indicates the direction of propeller rotation,
the straight arrow indicates control force, the + sign shows position of cyclic-
angle vy, and the control moment acts out of the page at azimuth angle position
denoted by +. Results for two propellers in line are as follows:

1 2

db
to isolate with equal y, side forces = -
pitching: are cancelled.

+ +
yawing and : T +
rolling: cannot be isolated.
normal
force: with equal y, yawing and

rolling are cancelled

’—*A_*
side
force: with equal vy, pitching is
cancelled
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Hence, for two propellers, all control forces and moments can be isolated except
yawing from rolling.

Results for three propellers in line, are
1 2

w

b

to isolate . <

pitching: with Yp = vp t vy vy T vz +
side force and yawing cancel

yawing: With v, = v +v3s ¥y = 13
normal force and rolling
cancel

rolling: with Yo = 0, Y = 73
normal force and yawing
cancel

normal

force: with Yo = 1 +yg Y1 =73

yawing and rolling cancel

side .
force: with vy = vy + 74 ) R
pitching is cancelled .

With three propellers, propeller rotation given by the sense ¥\ /7 N / \
can also isolate control forces and moments, however, the relationship between,
Y1,Y2,Y3 for isolating rolling, becomes complicated; also, the yawing ability

is weak since it would be only that due to the center propeller moment arm off-
set.

Results for four propellers in line, are

)

()
9
(4
O
Ow

—a
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to isolate

pitching:




— M A V i —_—
normal
force:
side
force:

With four in Tine propellers, the rotation sequence, = g~ ~—=( kK~ , of
the group on the left is preferred because the isolated yawing moment magnitude
is twice that obtained from the rotation of the group on the right. The other
isolated control forces and moments are the same in either group.

In all of the above configurations, an opposite propeller rotation leads
to the same result, except the directions of the straight arrows are opposite,
leading to some sign changes in the forces and moments. It can be noted that
three is the minimum number of propellers grouped laterally which can, by
cyclic-control, isolate all the control forces and moments. Cyclic-control
analysis for each of the propellers in a multipropeller group is assumed to be
the same as for the single propeller analysis given in equations (73) through
(76). Greater accuracy is possible if the steady-state CT and Cp versus blade
angle values are known for each propeller in a multipropeller group.

RESULTS AND DISCUSSION

Guide for Usage of Theory

The theoretical cyclic-control equations are derived as a generalized theory
relating cyclic-control forces, moments, power, and thrust changes, to the
steady-state characteristics of the same propeller. For each cyclic-controlled
propeller there are two arbitrary controls. These include the cyclic-blade
angle vy, for governing the magnitude of the cyclic-control force or moment, and
the azimuth control angle, Ycon, for governing the direction or sense of the
cyclic-control force or moment.

Sinusoidal cycle. - For the cyclic-blade angle which varies sinusoidally
with azimuth angle, the cyclic function is f(y - v¥o) = cos(y - ¥5), then with
angle vy not large, the cyclic-control relations are given in equations (73)
through (76). These relations are most useful, and are theoretically accurate
but analytically simple. Equations (40) through (43) apply for the condition
of Targe y. For the sinusoidal cycle the Ip, and IM, are evaluated by substi-

tuting n for a in equations (28) and (29), then IP, = 1, 3/4, 5/8, 35/64, . . .,
(n - 1)Ip,n-2/n, n =2, 4, 6, . . ., even, and IMp/cos¥o = 1, 3/4, 5/8, 35/64,
s NIy n-2/(n + 1)cosyg, n =1, 3, 5, . . ., odd.
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The cyclic-control solution in terms of Bessel functions represents a
closed function solution for any value of y. This solution is in terms of the
Fourijer coefficients of the steady-state thrust and power and radial centers
of thrust and power. The linear-with-J steady-state thrust coefficient is
represented in a Fourier series in Bg as in equation (45). Then the cyclic-
control change in thrust is given in equation (50), and the moments Cy and
Cn are given in equations (55) and (5). Similarly, with the steady-state power
coefficient represented in equation (51) as a Fourier series, the cyclic-control
jdeal change in power is given in equation (52), and the forces Cy and CN are
given in equations (59) and (7). The blade angle variation in a cycle is given
in equation (46) where ¥g from equation (1) includes the azimuth control angle
Ycon-

An alternative solution in terms of Bessel functions is as follows. If
the steady-state theoretical or experimental data includes the blade radial
center of thrust, then the product o¥C¥ can be expressed as a Fourier series,
given as

*C* =

pACE (e cos ng  + f sin ng ) (133)

0

n et 8

n

where e, and fp are Fourier coefficients. The cyclic-control solution for Cpy
is the same as that of equation (55) except ep and fn replace an and bp, and
since p1 is part of equation (133), KT = 0, oT = 1, then equation (55) becomes

- =1
Cm = Cncotw0 =5 coswO

™8

(-ensin ng, + f,cos nBO)J](ny) (134)

n 1

Similarly, for CP/pP expanded in a Fourier series

[}

P

P n

o1 8

. (gncos ng, + h.sin nBO) (135)

then with equation (59)

~1 8

_ 1 .
Cy = -C coty, = — CosY, (-gns1n ng, + hncos nBO)J](ny) (136)

N

n=1
Steady-state propeller data. - Propeller theoretical or experimental per-
formance charts conta1n Ct and Cp as functions of advance ratio. From the
Ct ~ J chart, CT from equation (B18) can be evaluated as a function of steady-
state blade ang]e, Bo- With the CF¥(Bg) function known, the derivatives of
CT with respect to By, or C¥ as a Fourier series in Bg, can be formulated for
use in the cyclic-control theory. Similarly, for a given value of J, the
Cp(Bg) function is known, then the derivatives of Cp with respect to gg, or
Cp as a Fourier series in Bo, can be formulated. An approximation for the
radial center of thrust is given in equation (53) and its derivative in equa-
tion (81). A similar approximate expression for radial center of power or
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torque is given in equation (57) and its derivative in equation (93). Propeller
performance data, particularly theoretical, can include the change of thrust and
power with change in radius, as a function of blade radius position. Then the
radial centers of thrust and power as functions of Bp are given directly for
application in the cyclic-control solution equations.

An alternative but approximate steady-state solution is presented in
appendix B. The first and second partial derivatives of the thrust coefficient
are given in equations (B16) and (B17). Equation (B17) into (73) gives the
cyclic-control thrust change, and equations (B16), (B10), (53), with (75) gives
the cyclic-control moments. The first and second partial derivatives of the
power coefficient are given in equations (B23) and (B24), which when J = 0,
simplify to those in equations (B31) and (B32). With equation (57), the ideal
?ower change and cyclic-control forces are determined from equations (74) and

76).

Arbitrary cyclic function. - The cyclic function is f(¥ - ¥g) defined in
equation (11). The cyclic function can be any arbitrary antisymmetric function
with azimuth angle, but by definition, bounded within 1. The generalized
cyclic-control solution for an arbitrary cyclic function is given in equations
(40) through (43). Example solutions of arbitrary cyclic functions are given
in the section, Cyclic function of cosine to m-power.

Extra power changes. - The total power change due to cyclic-control is
the sum of ideal power change plus extra power changes which include vibratory
swirl of the slipstream, angled slipstream, pitching airfoil of the propeller
blades, and vibratory structural damping. An estimate of these extra power
expenditures can be made from equations (100), (103), (104), and (105), respect-
ively.

Counterrotating propeller. - With the condition that each rotor has the
same value of v, the cyclic-control pitching and yawing moments are given in
equations (124) and (125) and side and normal forces in equations (126) and
(127). When moments are isolated, that is, forces are zero, the resultant
moment is given in equation (130) at a given azimuth angle. When forces are
isolated, that is, moments are zero, the resultant force is given in equation
(132) directed radial outward from the shaft at a given azimuth angle. The
thrust change is given in equation (108), and the ideal power change in equation
(110). The rolling moment about the propeller shaft is the change of torque
between the two rotors, given in equation (128). The longitudinal force along
the propeller axis, or thrust, is simply controlled by steady-state blade angle.
The extra power required in cyclic-control operation is approximated in equations
(100), (103), (104), and (105). However, in the isolated moment condition the
vibratory swirl from the two rotors cancel each other and equation (100) is
assumed zero. Also in the isolated moment condition, the forces are zero, then
equation (103) becomes zero.
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Example Solution and Experimental Comparison

An example use of cyclic-control theory is shown by applying the theory to
a test-model propeller. The theory is given in equations (73) through (76).
The geometric characteristics of the propeller are listed in equation (77).
Analytical analysis of the test steady-state thrust and power data results in
functional relationships with blade angle. Taking derivatives with respect to
blade angle provides the thrust and power derivatives. These derivatives
could have been obtained graphically from curves of steady-state thrust and power
against blade angle. These thrust derivatives are J = 0 values, but not the
linear-with-J values. The tests were made at J = 0, thus the thrust starred
value of equation (B18) remains unknown. For this case an estimate of the
thrust starred derivatives is given in equations (B19) and (B20), in terms of
thrust derivatives at J = 0. With the derivatives known and with equations
(53) and (57), the cyclic-control values are determined from equations (73)
through (76). Details of the theory application are given in the section titled,
Comparison of Theory with Experiment. In that section, theory values of thrust
change and pitching moment are compared with experiment, for various values of
blade angle. The theory and test results correlate within the accuracy of the
test measurements. Similar correlation is shown for the side force prediction.
The theoretical ideal change of power is of the order 30 percent less than the
total measured change of power. Extra power values are estimated in the section
titled, Total Power Comparisons of Theory with Experiment, which shows good
correlation between theory and experiment of total power change due to cyclic-
control. In comparison with the four extra power estimates, the slipstream
vibratory swirl power due to cyclic control appears as the largest.

Isolated Cyclic-Control Forces and Moments

In an aircraft control system it is desirable to initiate a given force or
moment without other accompanying forces or moments. The cyclic-control counter-
rotating propeller has this unique quality as shown in the development given in
the section, Counterrotating Propeller. Qualitatively, isolation of forces and
moments are demonstrated at the beginning of that section, and analytically in
equations (124) through (127). The control is by means of the azimuth angle of
each rotor. When ¥g2 of rotor 2 is set equal to Yg1 of rotor 1, then the forces
are zero and the moments are isolated. When Ypp is set equal to = + ¥gj, then
the moments are zero and the forces are isolated.

Concurrent control of arbitrary force and moment of a counterrotating
propeller. - Equations (118) through (121) apply for equal steady-state opera-
tion of the clockwise rotation rotor 1, and the counterclockwise rotation
rotor 2. The resultants of arbitrary moment and of force are given by

a2 2.1/2 _ -1 Cp
Cmn =(C "~ + Cn )T, at ¥on = knn + tan T

m (137)

m
Cn Cm

where kn = m (] - m‘)
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(138)

where kY =m(] -W

The desired moment, force, and directions are Cpn, ¥Ymns Cyy, and vyy. The
clockwise rotation rotor and the counterclockwise rotation rotor respectfully
have the cyclic-blade angle variation given by

By = By * vqc0S (v - WO]) (139)
By = By + Y,C0S (v - WOZ) (140)

For given values of Yy, ¥371, Yo, and ¥gp, the Cy, Cy, Cy, and Cy coefficients
are determined from equations %]]8) through (121). With these values, the
resultant moment and force are obtained from equations (137) and (138). In the
application for isolating force and moment resultants from each other, the
Y-angles become Yy = then equations (137) and (138) simplify to the solu-
tions of equat1ons ]38 and (132).

Multipropeller. - The forces and moments of a single propeller with cyclic-
control cannot be isolated. In the section, Multipropellers In Line, it is
shown how for two propellers in line as on a wing, the pitching moment and side
and normal forces can be isolated, but yawing and rolling moments cannot. Three
propellers in line is the minimum number for which all forces and moments can
be isolated. For propellers in line the direction of propeller rotation of
one propeller relative to the next, influences the magnitude of the isolated
yawing and rolling moments.

Effect of Cyclic Function

Cyclic functions, f(¥ - v¥,), other than sinusoidal are investigated in the
sections Cyclic function of cos1ne to m-power and Cyclic function for most
moment with least extra power, also, with minimum blade pitching acceleration.
The results show that when the cyc11c function is a step function then the
cyclic-control forces and moments are maximum, 27 percent larger than for the
sinusoidal cyclic function. The ideal change in power is twice larger than that
for the sinusoidal cycle. The step function means that blade angle is 85 + ¥
for half a cycle and Bo - ¥ for the second half, which results in an infinite
blade angle acceleration at each change. The largest cyclic-control force or
moment for a given ideal change of power is shown to be a cyclic function
which is sinusoidal. Blade fatigue depends on the maximum blade angular accel-
eration. The cyclic function which has the smallest maximum acceleration has
ten percent less than that of the sinusoidal cycle and is given in equation (39).
This function is very close to sinusoidal and the force or moment to power
ratio is essentially the same as that of the sinusoidal cycle.
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Propeller Inclination

Propeller forces and moments and thrust and power changes are generated
when the propeller is inclined to the free-stream velocity. These values are
obtainable from the theory of reference 4. It is the derivatives with respect
to blade angle of the steady-state thrust and power of the inclined propeller
which are used for application in the present cyclic-control theory. The total
propeller forces and moments are those due to cyclic-control plus those due te
inclination angle.

CONCLUSIONS

The equations for forces and moments, and thrust and power changes, due to
a cyclic-controlled propeller, when analytically derived by power series, have
led to a mathematical classic in simplicity. These cyclic-control equations
are directly related to the derivative with respect to blade angle of the steady-
state propeller thrust and power characteristics. The solution remains simple
for any harmonic variation of cyclic-blade angle with azimuth angle during the
blade revolution. An alternative solution, limited to sinusoidal variation of
cyclic-blade angle, is in terms of Bessel functions, which results in a closed-
form solution for any value of maximum cyclic-blade angle. The study shows that
a sinusoidal variation of cyclic-blade angle gives the maximum control force and
moment for a given ideal change in power. A step variation of cyclic-blade |
angle gives the maximum control force and moment, which is 27 percent greater
than that of sinusoidal variation, however, the ideal change in power is twice
larger. A sinusoidal cycle with a small third harmonic is as effective as
the sinusoidal alone, but has ten percent less maximum angular acceleration
which may be a fatigue consideration. Analyses for estimating four extra power
required terms show that the slipstream vibratory swirl excited by cyclic actions
adds 15 to 20 percent to the ideal change in power, while several other contri-
butors to power remain small. An example application of the theory to a cyclic-
control test propeller shows good correlation between theory and test results of
cyclic-control force and moment, and power and thrust change. |

Cyclic-control analysis is developed for the counterrotating propeller. It
is shown that uniquely, a single counterrotating propeller can isolate all
cyclic-control forces and moments, thus this propeller makes an ideal powered
control, active control, and propulsive unit for a vehicle. A minimum of three
and preferably four propellers in line, as on a wing, are needed to isolate all |
cyclic-control forces and moments.

KENTRON INTERNATIONAL, INC.

Hampton Technical Center
an LTV company

Hampton, Virginia 23666
May 2, 1979
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APPENDIX A

QUASI-STEADY AZIMUTH ANGLE CHANGE DUE TO BLADE
CYCLIC PITCHING AT CHORD POSITION €a

For a blade that pitches about an axis x, distance from the leading edge,
a linear with x velocity is induced along the blade chord, as shown in the
drawing. This induced velocity creates

an induced camber on the blade which is blade 0a
positive for plus wy, and is a negative . .
camber when wa is negative. This camber /\L v /2 ;\:15 of rotation
changes the blade loading and 1ift, thus —— Xy —>% T T T I
—> Ve -
de _ 1 2 v
2P (e ry) (A1)

The quasi-steady solution assumes that the 1ift is that with wa as a constant.
The induced velocity is

v _ Dug
T (e g (A2)

where b is blade chord, & = x/b, &3 = xa/b. The thin-airfoil solution for
1ift of the blade with this induced velocity is

bwa

c, = 2m [ao v (7 -] (A3)

The value within the brackets represents the effective blade angle which for
cyclic control becomes

bw
_ a (3 _
Bo +.Yf(‘l’ - ‘PO) = BO + Yf(‘i" - "P-I) + -\T (I Ea) (A4>
where
_ 2wnr _
Vp = cose * 17 Ypn T ¥eon (A5)

The angular velocity of a cyclic-control blade is the derivative of equation
(Ad) with respect to time, then

df(y - vq)
- o  dy 1 b
s g taf-nlry— g — ¢
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which since By, Y, and w, are assumed constant with time, becomes

df(y - vq) d(v - ¥;) df(y - v,)
- ‘ L 1 (A6)
Wa ~ Y d(v - ¥ dt ™ty - )
Also, at r = 3 R
’ Z
~ 3 2
Vp = 5 moR[1 + (%%)2]” , b=3mZ (A7)

Combining equations (A6) and (A7) results in

buw 21 <y df (v - ;)

o ; )
dly - v
e (A2 1

Equation (A8) is inserted into the effective blade angle equation (A4), then

2r (3 - £) df(y - ¥)
Fly - ) = f(y - wy) + —B 24 o (A9)
[+ (39°17/° ‘

3n

which shows angular change due to the derivative term. For sinusoidal blade
variation, f(y - w]) = cos(vy - w1), then

2n 2 (3 - ¢,)
cos(y - v ) = cos(y - v¥,;) - sin(y - y,)
0 1 1
43,2-1/2
[1+ (39°]
(A10)
1/2
3 2 g ;3
[2n 2 (3 - €.)] en & (7 - &)
=<1 + B 4 a cosqY - ¥y + tan”) B 4 a
43,2 49,241/2
1+ (3D [1+ (39°]
Since (o/B)2 js small, the factor of the cosine term is approximately unity,
then with equations (1) and (A5), equation (A10) simplifies to
3
2n = (3 - £,)
¥, (¢.) = -tan”! B 4 a (A11)
x e 43,2172
[1+(§)]
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. . 1
The effective Yo 1S vy (g.) - v (Z), then

X' ~a ax

20 2 (g, - 3)
v, = tan”] "Bla 4 (A12)
[+ (3921

3n

where g5 = x,/b is the blade chord position from blade leading edge about
which the blade pitches, typically g5 = 1/2. The effective phase angle change,
Yax» due to blade pitching at arbitrary values of g5, will not be large since
the ratio of propeller solidity to number of blades is small.
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APPENDIX B
APPROXIMATE STEADY-STATE PROPELLER THRUST AND
POWER COEFFICIENTS AND DERIVATIVES

From reference 4 the linear with advance ratio approximations of thrust
and power coefficients are

CT* = eT(JOT - J)cos(B0 - €) (B1)
*_ -
Co* = ep(Jpp = ) sing (B2)
where
eT - 4.6 Ko 5 (83)
1+ (3 +35)ko
B
eP - 10.4 |<024 (B4)
1+ (1 + 55)ko
B
Jop = gtans, (B5)
g =2.1+.5tang (B6)
Jop = g7 + D (B7)

2

_8d[1 + 7 sin"3(s; - 8y)]

h : 3 (B8)
15 s1n30 cos 80
_ 3kagy . 2
dy = 65 * .8(50 + —E—)s1n By (B9)

where « is blade section 1ift coefficient divided by 2w, B is number of blades,
8o is blade section drag coefficient at zero 1ift, and gy is given in equation

(54). The nonlinear variation with advance ratio is approximated by a square
root factor, as

C*
CT = 77 (B10)
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Cp = 72 | (B11)
P
where

_ 25 2 3 . 2 J 2

E; = 1+ i (1 + §-51n230) (1 - j__) (B12)

oT

_ 2 J 2

EP =1+9 eP (] - 36;0 (813)

Thrust Coefficient Derivatives

The ratios of C¥'/CT, and C¥'I/CT are needed. The single prime and double
prime indicate the first partial derivative and the second partial derivative
with respect to 8p. From equation (B5)

2J
! 0T g
J = — = —= (B14)
oT sm23O coszso
. 24 2gsing
Jop = - 0 (B15)

cos BO C05380

then the first derivative of equation (B1), divided by CT’ is

T [ ot - tan(s_ - e)]E 172 (B16)
CT (JOT - J)s1n280 0 T

The second derivative of equation (B1), divided by CT’ is

Cx 2J~-+Sine
L. [_1 ' I ]ET]/Z (B17)
T (JOT - J)smBO cos”B, cos(B0 - €)

When advance ratio is zero, the advance ratio at zero thrust terms becomes unity
in equations (B16) and (B17).

Generally steady-state propeller thrust coefficients are presented in
propeller charts as a function of advance ratio, J. Then the linear with
advance ratio thrust coefficient is obtainable as
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A€
et = (D) (gp - 9) (B18)
J=dgr

from which the derivatives with respect to By or g can be evaluated. However,
if only static conditions, J=0, data is available, then 3C7/3J cannot be form-
ulated. For this case the CT derivatives can be obtained from equation (B10).
The first and second derivatives of C§ in terms of CT, are

C

T T T 1/2

= + JE (B19)
CT CT ET T
C*Il C [} E ] 1 E 1 E 11
T T T°T 1, T,2 1 1/2

- [+ R (820)
CT CT ETCT 4 ET 2 ET T

v 75 2 3 .
ET =g er (cosZs0 * 15 s1n460) (B21)
E; = %?—eTz(%-cos4BO - sin28 ) (B22)

Application of equations (B19) and (B20) provides approximate predictions of
the linear with J thrust coefficient derivatives in terms of steady-state
test or propeller theory thrust coefficient derivatives.

Power Coefficient Derivatives
The derivative ratios Cp'/Cp, and Cp"/Cp are obtained by taking the deri-

vatives of equation (B11) with respect to Bp. The first and second derivatives
divided by Cp are

c! Cx! E!
o e (B23)
p S5 p
B % EE.C3'4.§(EEf-J_EEL (B24)
* *
¢, C G CE T TAE T2E
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where Ep is given in equation (B13), and the Cy and Ep derivatives are

G . Jop (825)
* _ <

CP tans0 JOP J

Cx! ! gLt 2J!

g* =-1+ J Of gF (J.5 - 8; tan (B26)
P P P Bo

=18 e 2 -9 (1 - -3 Jop (B27)
P P Jop Jop” Jop

. 2 J 3 Jop J .\, 0P, 2

B =18 ep? 3 [(1 - 75 (P (2 - 357 (628)

oP op  Jop o’ Jop

where JOP is given in equation (B7), and the derivatives are

. . 2
ZJOT 8dO {21 s1n6(s0 - e]) ) 1 -4 sin B,

= — +
op s1n280 15 sinso cos3sO sin280 cos4s0
[1+7 sin® 3(p, - 3])]} (B29)
. 2
oo ZJOT 16d0 63 cosG(Bo - 8]) 21(1 - 4 sin BO) -
Jop = 7 s : 3" T2 7 siné(s, - 8) +
COS™B sing, cos™g, sin"g, cos'g,
1-3 sinzso + 8 sin480 2
sin By COS Bo
At zero velocity, or in hover, the advance ratio is zero, then Eﬁ = Eé' =0,
and the power coefficient derivatives greatly simplify. For J =0 '
C, J2
P 1 oP
— = + — (B31)
CP tans0 JOP
Cp 2dop  Jgp
[ b J (832)
p op anBy  Jop
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